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Abstract—Agricultural productivity is heavily impacted by pests such as aphids, which cause significant crop damage and act as
vectors for plant diseases. Effective pest detection and management are crucial but challenging with traditional methods. This
research introduces the Attention and Median Training-Free Prototype Calibration (AM-TEEN) model, a novel Few-Shot Class
Incremental Learning (FSCIL) approach designed to improve the accuracy and robustness of pest detection systems. The model was
evaluated using datasets including Aphids, Agricultural Pests from Kaggle, DLFautoinsects, and CIFAR-100. The experimental setup
involved systematically varying one parameter at a time to comprehensively analyze its impact on model performance. AM-TEEN
model significantly outperforms the base TEEN model. Specifically, in the first incremental session, accuracy improved from 87.50%
to 97.92%, and in the last incremental session, accuracy increased from 67.08% to 74.17%. These improvements underscore
the model’s enhanced ability to handle incremental learning challenges and maintain high accuracy across diverse datasets. The
enhanced model not only offers better accuracy and robustness but also demonstrates the potential for more efficient and scalable
pest detection systems.

Index Terms—Computer Vision, Classification, Class Incremental Learning, Few-shot Learning, Aphids

1 INTRODUCTION

Protecting crops is crucial for sustaining agricultural
productivity by minimizing the effects of weeds, pathogens, and
pests like aphids. Aphids, in particular, pose a significant
challenge in agriculture because of their role as disease
carriers. These pests are a persistent issue for all types of
growers, from small-scale gardens to large agricultural
enterprises. Specifically, aphids like the green peach potato
aphid not only damage plants but also transmit several harmful
viruses, such as the potato y virus, which impacts economically
important crops including potatoes [1][2][3][4].

Aphids significantly impair agricultural productivity not only
by damaging crops but also by acting as vectors for various
plant diseases. Consequently, effective detection and
management of aphids are critical. Traditional methods, which
typically involve meticulous visual inspection and counting of
insects using approaches such as sticky plates, are
labor-intensive, prone to errors, and may inadvertently harm
beneficial insects [16]. In response to these challenges, there
has been a shift towards developing more sophisticated
techniques, including the application of artificial intelligence
(AI), especially advancements in computer vision and deep
learning (DL), which are now being used to detect and classify
insects more efficiently and accurately, marking a significant
improvement in how we tackle this pest problem [5].

With these limitations for manual counting and classification
in mind, researchers are using computer vision and DL to
enhance the process of managing these pests and improve the
accuracy of insects image classification [5]. Although the newly
designed DL algorithms have shown promising results,
acquiring enough training data remains a challenge. The
limited availability of images for training these models poses
significant obstacles, particularly due to difficulties in data
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collection in the field. One innovative solution to this problem is
few-shot learning (FSL), which utilizes minimally labeled data
to enable the model to adapt insect species. Such adaptability
enhances the model’s utility in many real world scenarios
related to managing a scarce amount of training data [6].

Another challenge in this context is the continuous
emergence of new insect classes that might not have been on
the training data. and the need to integrate these efficiently and
effectively into the existing model. Few-shot class incremental
learning (FSCIL) offers a promising solution to this problem
[7][10]. This approach not only addresses the challenge of
image classification in situations with scarce data but also
allows for the progressive inclusion of new insect classes into
the model without the need for repeated re-training of the entire
system. Importantly, it manages to do this while maintaining or
even improving the accuracy of previously trained classes as
new data is introduced. This capability of FSCIL to adapt
incrementally suggests that it may be one of the potential
solutions for managing dynamic agricultural environments,
where different types of insects are regularly encountered.

This paper aims to enhance an existing FSCIL (called
Training Free Prototype Calibration - TEEN) approach by
integrating an attention mechanism and optimizing the
prototype generation method. Our objective is to develop a
model for the classification of insects, such as aphids, using
minimal data collected in the field and to incrementally
incorporate new insect classes encountered after the initial
training, in a resource-efficient manner. The subsequent
sections will review related works, provide an in-depth
explanation of the proposed solution, describe the
methodologies, detail the experimental scenarios, and present
the results and conclusions.

2 STATE OF THE ART

Few-shot learning (FSL) is an approach in which a model
learns to make predictions by training on a very small number
of labeled examples. The work of [8] proposes a solution to
recognizing insect pests using a FSL approach, and to handle
the challenge of the high similarity between insect variations at
similar maturity stages. A subset of insect images from the
IP102 dataset is used for representing 45 young and 97 adult
classes of insects. Then a FSL prototypical network was



employed to divide young and mature classes into seperate
groups on this dataset in comparison with mini-imagenet
dataset as a baseline. Regarding the Kullback-Leibler
divergence metric, the best results yielded an accuracy of
86.33% for adults and 87.91% for early stages.

Another approach for counting and classifying in images
would be the use of class incremental learning (CIL). The work
proposed in [9] selects the Dynamically Expandable
Representation (DER) as the baseline. They combine the
intrinsic properties of sonar images of marine debris and sea
bed objects with deep learning theories and optimize both the
backbone and the CIL strategies of DER. The culmination of
this optimization is the introduction of DER-Sonar, a CIL
network tailored for sonar images. Evaluations on
SonarImage20 shows that it can outperform competing CIL
networks with an average accuracy of 96.30%, an
improvement of 7.43% over the baseline.

The study presented in [11] focuses on memory and
computational constraints in model training. Specifically, it
highlights three key points: each class is represented by only a
limited number of training samples, adding a new class
requires a fixed amount of computational effort, and the
model’s memory usage increases linearly as more classes are
added. They propose C-FSCIL, a model designed with a
frozen meta-learned feature extractor, a trainable fixed-size
fully connected layer, and a dynamically growing data structure
that stores vectors based on the number of introduced classes.
The model strikes a kind of balance between accuracy and the
cost of computing. It utilizes hyperdimensional embedding to
represent classes in a fixed vector space while minimizing
overlap. The experiments were conducted on the CIFAR100,
miniImageNet, and Omniglot datasets show that C-FSCIL can
outperform some state of the art methods by achieving the
50.47% accuracy in the final session for CIFAR-100, 51.41%
for miniImageNet, and 85.70% for the Omniglot dataset.

In their study [12], researchers introduced a distillation
algorithm specifically tailored for FSCIL, utilizing semantic
information such as word embeddings to aid the training
process. These embeddings are not only cost-effective but also
improve the distillation process. Additionally, they developed a
technique using an attention mechanism to synchronize visual
and semantic vectors across multiple embeddings to help
mitigating the problem of catastrophic forgetting. Their
experiments on the MiniImageNet, CUB200, and CIFAR100
datasets set new benchmarks, showed a 39.04% accuracy on
MiniImageNet’s final session, substantially higher than the next
best result of 24.4% by TOPIC, showing a more than 14% lead.
Similar results were seen on CIFAR100 and CUB200, where
they recorded accuracies of 34.80% and 32.96%, respectively,
again leading the field.

An alternative FSCIL approach was proposed in [13] named
the forward compatible training (FACT) approach. They utilized
virtual prototypes to squeeze the embeddings of existing
classes while making room for future ones. Additionally, the
system anticipated potential new classes and sets the stage for
subsequent updates. These virtual prototypes served as
placeholders within the embedding space, enhancing the
model’s capability to integrate future changes and
strengthening the classifier during inference. Comparative
results on the CUB200 dataset show that the model surpassed
the CEC method, achieving improvements of 2.8%, 6.6%, and
6.4% in the accuracy of base classes, new classes, and their
harmonic mean, respectively.

While existing FSCIL approaches typically involve adding
new learnable components or using a frozen feature extractor
to reduce issues like catastrophic forgetting and overfitting,
these methods often incorrectly classify samples of new

classes as belonging to base classes, resulting in poor
performance for the new categories. Paper [14] discovered that
although the feature extractor is initially trained only on base
classes, it can still capture the semantic similarities between
these and the untrained, new classes. Based on these insights,
they developed a novel approach called training-free calibration
(TEEN). This strategy improves the recognition of new classes
by merging new prototypes (i.e., the mean features of a class)
with weighted base prototypes. Tested against CIFAR100,
CUB200, and miniImageNet, TEEN achieved better results in
comparison to methods like CEC, TOPIC, and FACT.

Given the current state of the art in FSCIL and related
methodologies, it is clear that while existing techniques like
TEEN and FACT have set state-of-the-art benchmarks, there is
still room for enhancement, especially in handling newly
introduced insect classes more dynamically and efficiently.
Current approaches often lack the incorporation of attention
mechanisms, which have shown to produce better results in
various machine learning tasks [19][20]. Our approach
addresses this gap by integrating an attention mechanism just
before the fully connected layer. This integration effectively
amplifies important features and suppresses less relevant
ones, leading to more precise classification. Additionally, we
have advanced the prototype generation process by adopting
other statistics for prototype calculation. These contributions
aimed at not only maintain high accuracy across both
established and newly introduced classes and improve the
overall accuracy but also to reduce the computational overhead
typically associated with traditional FSCIL approaches. As a
result, our method is seeking a more scalable and robust
solution in the diverse agricultural settings.

3 MATERIALS AND METHODS

This section describes the development of a FSCIL approach
for image classification with images taken in a farm environment
and newly introduced classes over time. The model addresses
the challenge of continuously learning new classes with minimal
data for each new class and without training for new classes.

3.1 Dataset
The main dataset used in this study was created using an

imaging setup located on a farm, which captures images of
moving and flying insects. Full specifications of the setup are
detailed in Appendix A.1. The dataset comprises 1,131 insect
images of varying sizes, which have been resized to 224x224
pixels for consistency. These images are categorized into 10
distinct classes with the distribution showd in Table 1. The
dataset is divided into training, validation, and testing sets, with
a split ratio of 70%, 10%, and 20%, respectively. Figure 7
displays sample data classes from the aphids dataset.

In addition to the main dataset, two other datasets were
utilized in this study. Agricultural Pests Dataset published on
Kaggle by Gaurav Dutta, 2023, comprises 5,179 images
across 12 insect classes, namely Ants, Bees, Beetles,
Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths,
Slugs, Snails, Wasps, and Weevils. The images were collected
from Flickr using an API and resized to have a maximum width
or height of 300 pixels. This dataset is designed to aid
researchers and practitioners in the development and
evaluation of DL models for pest detection and classification in
agricultural settings. The per-class distribution varies, providing
a diverse range of images that cover various shapes, colors,
and sizes. The Agricultural Pests from Kaggle dataset were
cleaned and split as part of this study.

DLFautoinsects Dataset published by Chengjun Xie et al.,
2018, contains 4,500 images spanning 40 pest insect classes
collected from crop fields. The classes include Dolycoris
baccarum that affects various crops including berries and



Fig. 1: Sample images from the datasets: (first row) Aphids, (second row) Agricultural Pests, (third row) DLFautoinsects

Table 1: Aphids class distribution

Class Number of Instances

Thrips 74
Melanogaster 124

Wasp 40
Aphid winged-outdoors 263

Spider 40
Aphid wingless 219

Crane Fly 123
Reflection 115

Water Drop 109
Moth 24
Total 1131

legumes, Lycorma delicatula an invasive species damaging a
wide range of plants and trees, Eurydema dominulus which
affects cruciferous plants, and many more. Each class has a
varying number of images, providing a comprehensive dataset
for evaluating the performance of DL models on diverse insect
species. The images were resized to maintain consistency.
These datasets sample images and data distributions are
depicted in the appendix B3.

These datasets were used alongside the main dataset to test
the robustness of the AM-TEEN model. The combination of

Aphids and Agricultrual Pests and the combined Aphids,
Agricultural Pests, and DLFautoinsects datasets enabled the
assessment of the model’s ability to generalize across different
insect species and environmental conditions. The images from
all datasets were preprocessed to maintain uniformity in size
and format, ensuring compatibility with the model’s input
requirements.

3.2 Approach
Our approach builds upon the TEEN model introduced in

[14], a FSCIL approach. The TEEN model trains the feature
extractor on base classes. Base classes are the initial set of
classes that the model is trained on before it begins to learn
new classes incrementally. These classes form the foundation
of the model’s knowledge and are used to initialize the model’s
parameters. The TEEN model then employs semantic
similarities to adapt new, untrained classes into the model in
incremental sessions. The incremental sessions process
involves loading the previously trained model, updating the fully
connected layer with new class prototypes, and applying soft
calibration. The model is then evaluated on the test dataset,
and the results are logged and compared to previous sessions.
The overview of this process is illustrated in the Fig. 4.

3.2.1 Feature Extraction
The feature extractor is built upon a pre-trained ResNet-18, a

convolutional neural network widely used in image
classification. This network uses residual blocks to enable the



training of deeper networks by effectively handling the
vanishing gradient problem. The architecture consists of the
following major parts:

The initial convolution and pooling, that involves a
convolutional layer with a 7x7 kernel and stride 2, followed by
batch normalization, a ReLU activation, and a max pooling
layer. This setup initially reduces the spatial dimensions of the
image (height and width) while increasing the depth (number of
channels).

Fig. 2: Updating the FC layer

A series of residual blocks (Layers 1-4), which are sequential
residual blocks that further process the data. These blocks can
adjust their behavior using dilated convolutions instead of
standard convolutions if specified, helping the network maintain
a larger effective receptive field without significantly reducing
the spatial dimensions. After these features are extracted, the
next step involves updating the fully connected layer.

3.2.2 Updating Fully Connected Layer Weights
The FC layer weights are updated using calculated class

prototypes. These prototypes are derived from the mean of the
embeddings of data examples belonging to the new class. The
process involves encoding the data examples to obtain their
embeddings, computing the mean of these embeddings for
each new class, and assigning these prototypes to the
corresponding class indices in the FC layer. If no data
initialization strategy is used, the weights are initialized
randomly with a uniform distribution. Otherwise, the prototypes
are computed directly from the embeddings of the new class
examples. Fig. 2 is a simple illustration of this step. However,
directly using these prototypes can lead to a misalignment with
the base classes, which necessitates the next crucial step of
soft calibration to ensure the new classes integrate seamlessly
without degrading the model’s performance.

3.2.3 Soft Calibration
To prevent catastrophic forgetting of previously learned

classes, a technique known as soft calibration is employed.
This method adjusts the prototypes of the new classes based
on their similarity to the prototypes of the base classes. The
adjustment involves computing a weighted sum of the original
prototype and a calibration term derived from the base
prototypes, scaled by a hyperparameter. This ensures the new
prototypes are aligned with the previously learned ones,
maintaining performance across both new and old classes.
The Fig. 3 depicts a simple illustration of this step.

Then the soft calibration method performs a process to adjust
the prototypes of the new classes based on their similarity to the
prototypes of the base classes. Given a new class prototype cn
(where B ≤ n ≤ B +C − 1), the calibrated new prototype c̄n is

Fig. 3: The insect icons represent examples of base and new classes.
The dotted lines between examples and prototypes illustrate the
classification results: blue and green dotted lines indicate correctly
classified samples, while red dotted lines and red circles denote
misclassifications. The right figure shows the prediction changes after
applying soft calibration.

computed as a weighted sum of the original prototype and a
calibration term based on the base prototypes:

c̄n = αcn +(1−α)∆cn (1)

where α is a hyperparameter controlling the strength of
calibration. The calibration term ∆cn is derived from the base
prototypes as:

∆cn =
B−1

∑
b=1

wb,ncb (2)

with the weights wb,n calculated as the softmax of the cosine
similarities between the new class prototype and all base class
prototypes, scaled by a hyperparameter τ:

Sb,n =
cb · cn

∥cb∥∥cn∥
· τ (3)

Here, Sb,n represents the scaled cosine similarity between the
new class prototype cn and the base class prototype cb. The
term cb·cn

∥cb∥∥cn∥ computes the cosine similarity, which measures
how similar the two vectors are in the feature space. This
similarity is then scaled by τ, which controls the sharpness of
the softmax distribution. The weights wb,n are then computed
as:

wb,n =
eSb,n

∑
B−1
i=0 eSi,n

(4)

This formula normalizes the scaled similarities using the
softmax function, ensuring that the weights sum to 1. The
weights wb,n indicate the relative importance of each base
class prototype in calibrating the new class prototype.

The soft calibration thus adjusts the new class prototype
towards the direction of base class prototypes, accounting for
the similarity between them, which helps to alleviate the bias in
the prototype due to limited data in the incremental session.
This calibration strategy is training-free, requiring no additional
learning or updates to the model parameters, and aims to
enhance the discriminability of the new class prototypes by
incorporating the knowledge distilled from the base classes.

3.3 AM-TEEN
In this section, we outline the methodology used to develop

our FSCIL approach, the Attention (An adapted variation of the
channel wise attention mechanism proposed in [20]) with
Median on Training-Free Prototype Calibration (AM-TEEN). We
leverage a pre-trained ResNet-18 model as the backbone for



Fig. 4: (a) The base session includes sufficient examples of base classes for training. Subsequent incremental sessions contain only few-shot
examples of novel classes. FSCIL aims to develop a unified classifier for all seen classes. (b) The most similar base classes are identified by
computing the cosine similarity between base and novel prototypes. The results demonstrate that the feature extractor, trained solely on the base
classes, effectively represents the semantic similarity between the base and novel classes.

Fig. 5: AM-TEEN model architecture

feature extraction, just as the TEEN base model does. Initially,
the network is trained with a predetermined number of base
classes, forming the base knowledge of the model. Following
this, the model is prepared to accept new classes
incrementally. However, unlike the TEEN model which uses the
mean of the embeddings, our approach updates the fully
connected (FC) layer weights with the median of the
embeddings (prototypes) of the new classes. The feature
extractor remains unchanged, while the FC layer, responsible
for classification, is updated with the weights of the new
classes. In each increment, a defined number of new classes
are introduced using a few-shot learning approach (e.g., 5-10
shots per class) and the prototype of the new class examples is
computed and used to update the FC layer’s weights. We also
employ the soft calibration method to maintain the performance

of previously learned classes while integrating new ones
incrementally. Fig. 5 shows the architecture of the AM-TEEN
model.

To address the challenge of focusing on the most relevant
features and reducing computational complexity, we
incorporate a reduction convolution layer and the channel
attention mechanism. The reduction convolution, a 1x1
convolutional layer, reduces the depth of the feature maps from
512 to 64, lowering the computational load and simplifying the
feature space before passing it to subsequent layers. This
forms the basis for the attention mechanism, a novel
contribution not present in the TEEN model. The attention
module applies attention across the channels of the feature
maps, starting with average pooling to squeeze spatial
dimensions, resulting in a 1D vector per channel. This vector is
processed through a small network to predict attention scores
for each channel, which are used to rescale the original feature
maps. This process allows the network to adaptively
emphasize or de-emphasize certain channels, potentially
focusing on more relevant features for the task. By computing
attention scores across feature map channels, the model
dynamically highlights the most relevant features, improving
accuracy and adaptability. These steps boost the model’s
capacity by focusing on the most informative parts of the
feature space, enhancing the overall performance and
robustness of the AM-TEEN model in addressing the
challenges of few-shot class incremental learning.

3.4 Training



Algorithm 1 Few-Shot Class-Incremental Learning Training

1: Initialize model with given architecture and arguments
2: if pre-trained model is available then
3: Load pre-trained model weights
4: end if
5: for each session in total sessions do
6: Load training and testing datasets
7: Initialize session-specific transformations
8: if session is base training session then
9: for each epoch do

10: Train model on base classes
11: Evaluate on test dataset
12: Save model if there is improvement
13: end for
14: if data initialization strategy is enabled then
15: Replace FC with average embeddings
16: Save initialized model
17: end if
18: else
19: Set model to evaluation mode
20: Update dataset transformations if required
21: if soft prototype strategy is employed then
22: Update FC with median of new class embeddings
23: Perform soft calibration
24: Save updated model after FC update and calibration
25: end if
26: Evaluate model on test dataset
27: Update training log with current session’s performance
28: end if
29: Save incremental session results
30: Log results to TensorBoard
31: end for
32: Compute and save final results to file
33: Log final results to TensorBoard
34: Output total training time

The training process involves two primary steps: training on
the base classes and incrementally training on new classes in
subsequent sessions. This section elaborates on the detailed
procedure for each step, highlighting how the model adapts to
new data over time. The training algorithm is shown in the
Algoritm 1.

3.4.1 Base Session

The model is trained on the base classes until convergence.
During each epoch, the cross-entropy loss is computed using
the ground truth and predicted labels of the training data.
Additionally, the accuracy on the training data is evaluated.
After training, the evaluation process involves validating the
model on data unseen during training, and the test loss and
accuracy are calculated for each epoch. If the evaluation
accuracy surpasses the previous best accuracy, the model
parameters are stored. The training progress and results,
including loss, accuracy, and time per epoch, are logged.

3.4.2 Incremental Session

During incremental sessions, the fully connected layer
weights are updated using the calculated class prototypes by
the median of the embeddings of data examples belonging to
the new class. These prototypes are assigned to the
corresponding class indices in the fully connected layer. The
soft calibration method adjusts the prototypes of the new
classes based on their similarity to the prototypes of the base
classes. This calibration strategy is training-free, requiring no
additional learning or updates to the model parameters, and
aims to enhance the discriminability of the new class

prototypes by incorporating knowledge distilled from the base
classes. Fig. 2 is a simple illustration of this step.

3.5 Evaluation Metrics:
When evaluating the performance of our model, we employ

several metrics to ensure a comprehensive assessment,
particularly given the imbalanced nature of some datasets.
These metrics include average accuracy, seen accuracy,
unseen accuracy, the harmonic mean of seen and unseen
accuracy, and the F1 score.

Seen Accuracy measures the accuracy on previously
encountered classes, providing insight into how well the model
retains knowledge of classes it has already learned. Unseen
Accuracy assesses the accuracy on newly introduced classes,
reflecting the model’s ability to generalize to new information.
The harmonic mean of the seen and the unseen provides a
balanced measure of performance across both known and new
classes, and Average Accuracy is the overall accuracy across
all classes seen so far.

In datasets with class imbalances, such as our aphids
dataset, accuracy alone can be misleading. For example, in a
highly imbalanced dataset, a model might achieve high
accuracy by predominantly predicting the majority class,
neglecting the minority class. This scenario highlights the need
for more nuanced metrics like the F1 Score. The F1 Score is
the harmonic mean of precision and recall, balancing the
trade-off between these two metrics. Precision is the ratio of
true positives to the sum of true positives and false positives,
while recall is the ratio of true positives to the sum of true
positives and false negatives. The F1 score provides a more
reliable measure of a model’s performance on imbalanced
datasets by considering both false positives and false
negatives.

We applied these metrics to our datasets, recognizing the
significant imbalance present. In the aphids dataset, with a
max-to-min imbalance ratio of 10.96, the need for reliable
metrics like the F1 score is paramount. This imbalance is also
observed in other datasets, albeit to a lesser extent, such as
Agricultural Pests with a ratio of 2.96 and DLFautoinsects with
a ratio of 4.76.

By utilizing the F1 score in addition to accuracy metrics, we
ensure that our model’s performance is robust and reliable
across all classes, addressing the challenges posed by
imbalanced data. This comprehensive evaluation approach
confirms the effectiveness of our model in managing class
imbalance, thereby enhancing its reliability and applicability in
real-world scenarios.

4 EXPERIMENTS & RESULTS

We conducted experiments using the Aphids, Agricultural
Pests from Kaggle, DLFautoinsects [17], and CIFAR-100
datasets with the TEEN, Attention Teen (A-TEEN), and
AM-TEEN models. The experiments were conducted
systematically, varying one parameter at a time while keeping
others constant. This allowed for a comprehensive analysis of
each parameter’s influence on model outcomes.

4.1 Experimental setup
All experiments were conducted using ’Python 3.10.12’, and

for enhanced computational efficiency, we utilized the a
’NVIDIA A40-16C’ GPU with 16 GB memory, and ’CUDA
version 12.2’, enabling parallel processing and rapid matrix
calculations. Notably, access to computer hardware was
facilitated through university servers, providing a setup-free
Python environment for remote execution. The experiments
were using a PC client featuring an i7-8550U CPU, a 1.99 GHz
processor, and 12 GB of RAM. Specifically, on the Aphids



Fig. 6: Accuracy per session for the three different prototype generation methods (mode, mean and median) on Aphids dataset

Fig. 7: F1 score per session for the three different prototype generation methods (mode, mean and median) on Aphids dataset

Fig. 8: F1 Score per session for TEEN and AM-TEEN models on Aphids, and two combinations of the Aphids and other datasets

dataset, the results were achieved with a batch size of 128 and
a learning rate of 0.00003, using cross-entropy loss and SGD
optimization. In terms of model complexity and training
efficiency, the TEEN model consists of 11,221,568 parameters
with an average training time of 20.74 minutes. In comparison,
the AM-TEEN model, which includes the attention mechanism,
has 1024 more parameters and an average training time of
21.76 minutes.

4.2 Experiment 1

In this first experiment, we compared different methods for
generating prototypes from the embeddings of new class
examples. We also assessed the influence of incorporating an
attention mechanism in each model. Fig. 7 presents the results
for base and incremental sessions on the Aphids dataset. The
base classes are thrips and melanogaster and the incremental
classes are wasp, aphid winged, spider, aphid
wingless-outdoors, crane fly, reflection, water drop and moth.

Our evaluation focused on three prototype generation
methods: mean, mode, and median. Across these methods,
we measured the model’s accuracy both with and without the
attention mechanism.

The mean method shows strong initial performance in
session 0, achieving 100% accuracy. However, accuracy drops
considerably in subsequent sessions, falling to 67.08% by
session 8. Incorporating attention yields (Mean A-TEEN, Mode

A-TEEN, AM-TEEN) a noticeable improvement, with a smaller
decline in accuracy over sessions. Attention mechanisms,
despite adding a small number (around 1K here) of parameters
and making the model to train slightly slower(5-7%), can
provide significant improvements by dynamically highlighting
important features in the data.

When using the mode method, the model also starts with
100% accuracy in session 0, but its performance drops more
steeply than the mean method, reaching 60.42% by session 8.
The addition of attention helps the mode method maintain
higher accuracy across sessions, though the improvement is
not as pronounced as with the mean method.

The median method demonstrates the best performance
among the three, starting with 100% accuracy in session 0 and
maintaining relatively high accuracy through subsequent
sessions. By session 8, the model still achieves a 72.5%
accuracy. With the attention mechanism, the median method
achieves the highest sustained accuracy among all
combinations, showing a smaller decline over time and
maintaining accuracy above 74% through most sessions.

These results indicate that the median method provides
better stability and accuracy compared to the mean and mode
methods, especially when combined with attention. The use of
attention consistently leads to improved performance,
highlighting its importance regardless of the prototype
generation method employed. The superior performance of the



Table 2: Accuracy per session for TEEN and AM-TEEN models on Aphids, CIFAR-100, and two combinations of the Aphids and other datasets

Dataset Model Session 0 Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8 Session 9

Aphids TEEN 100 93.75 72.50 74.24 80.76 75.52 78.95 76.22 72.50 NA
AM-TEEN 100 97.92 83.57 82.69 86.87 76.56 79.91 76.64 74.17 NA

Aphids + * TEEN 93.27 83.30 80.36 72.09 66.44 65.69 64.67 60.52 59.78 61.71
AM-TEEN 91.83 84.72 81.92 75.97 70.92 70.28 68.73 66.27 62.83 64.32

Aphids ++ ** TEEN 84.68 74.58 72.69 63.93 65.04 66.09 66.36 65.92 60.85 61.78
AM-TEEN 87.99 76.25 74.54 63.73 65.94 66.45 66.49 67.12 62.20 62.39

CIFAR-100 TEEN 78.37 71.88 67.79 63.81 60.30 57.46 55.47 53.37 51.39 NA
AM-TEEN 78.83 72.35 68.53 64.67 61.60 58.68 56.56 54.54 52.27 NA

* Denotes a combination with the previous datasets (Aphids + Agricultural Pests, 22 classes (4 Base + 18 Incremental) in total).
** Likewise (Aphids + Agricultural Pests + DLFautoinsects, 62 classes (8 Base + 54 Incremental) in total).

median method can be attributed to its robustness against
outliers. By using the median of the embeddings to generate
prototypes, this method effectively reduces the influence of
anomalous data points, leading to more stable and
representative prototypes. This characteristic is particularly
beneficial in imbalanced datasets where outliers can
disproportionately affect the mean, resulting in less reliable
prototypes. Additionally, channel attention mechanism enhance
the model’s performance by dynamically emphasizing more
relevant features and de-emphasizing less relevant ones. This
selective focus allows the model to concentrate on the most
informative parts of the feature space, improving both precision
and recall. In imbalanced datasets, where certain classes may
have fewer and more varied examples, the ability to highlight
critical features ensures that the model can better distinguish
between classes, thereby maintaining high accuracy and
stability across incremental learning sessions.

The table 2 provides insights into two datasets, Aphids and
CIFAR-100, as well as two combinations of the Aphids dataset
with other datasets, comparing performance with and without
attention across a base and incremental learning sessions. It is
important to note that the combination datasets have one
additional incremental session, making direct comparisons with
the other datasets not straightforward due to differences in the
base size, the number of prototypes in the incremental
sessions, and the number of incremental sessions.

On the Aphids dataset (2 base classes and 1 incremental
class per incremental session), the model achieves 100%
accuracy in session 0 across all configurations. However,
performance declines in subsequent sessions, notably without
attention, with accuracy dropping to 72.50% by session 8. The
incorporation of attention, however, boosts performance, with
the model maintaining improved accuracy throughout all
sessions and consistently outperforming the non-attention
baseline, particularly in session 1 (97.92% with attention
versus 93.75% without) and session 8 (74.17% versus
72.50%).

When evaluated on CIFAR-100, with more number of classes
(100 classes (60 Base + 40 Incremental) in total), the benefits
of incorporating attention are still pronounced. Although the
initial accuracy starts slightly different than Aphids at 78.37%
without attention and 78.83% with attention in session 0, the
model demonstrates better resilience to incremental learning
challenges when attention is used. Accuracy drops to 52.27%
by session 8 with attention, compared to 51.39% without it.
The difference is more noticeable in the earlier sessions, such
as session 4 (61.60% with attention versus 60.30% without).

For the combination of Aphids and Agricultural Pests (Aphids
+, 22 classes in total, 4 base classes and 2 incremental
classes per incremental session), the TEEN model starts with
93.27% accuracy in session 0 and drops to 59.78% by session
8. In contrast, the AM-TEEN model starts with 91.83% and
maintains a higher accuracy of 62.83% by session 8. This

Fig. 9: External Validation Metrics for Different Datasets

dataset includes an additional incremental session (session 9),
where the AM-TEEN model continues to show superior
performance with an accuracy of 64.32% compared to 61.71%
for the TEEN model.

For the combination of Aphids, Agricultural Pests, and
DLFautoinsects (Aphids ++, 62 classes in total, 8 base classes
and 6 incremental classes per incremental session), the TEEN
model starts with 84.68% in session 0 and drops to 60.85% by
session 8, while the AM-TEEN model starts with 87.99% and
maintains a higher accuracy of 62.20% by session 8. This
dataset also includes an additional incremental session, where
the AM-TEEN model achieves an accuracy of 62.39%
compared to 61.78% for the TEEN model.

While combining datasets and adding new classes does not
always result in better performance, the Aphids, Agricultural
Pests, and DLFautoinsects datasets demonstrates an
improvement over the Aphids dataset but not over the Aphids,
and Agricultural Pests dataset. This suggests that the model’s
performance is influenced by data similarities and quality. It
becomes harder for the model to learn effectively when the
incremental sessions introduce more variability or less relevant
features. Therefore, while the addition of new classes can
provide more diverse training data, it is beneficial up to a
certain point beyond which the complexity and variability might
negatively impact the model’s performance.

The F1 score was particularly important in this evaluation, as
it provided a more balanced view of the model’s performance in
the presence of class imbalances. For instance, in the aphids
dataset, which had a max-to-min imbalance ratio of 10.96,
accuracy alone could be misleading. By focusing on both
precision and recall, the F1 score offered a more reliable
measure, ensuring that the model’s performance on minority
classes was accurately reflected.



Table 3: External Validation per Class Metrics on Aphids and
Agricultural Pests

Class Precision Recall F1-Score

Thrips 0.80 1.00 0.89
Melanogaster 0.81 1.00 0.90

Wasp 0.67 0.50 0.57
Winged Aphid 0.86 0.44 0.59

Spider 1.00 0.50 0.67
Wingless Aphid 0.77 0.91 0.83

Crane Fly 0.50 0.46 0.48
Reflection 1.00 1.00 1.00

Water Drop 1.00 1.00 1.00
Moth 0.60 1.00 0.75

Weighted Average 0.81 0.76 0.76

Fig. 8 illustrates the comparison of the F1 scores between
the TEEN and AM-TEEN models across different sessions and
datasets. For the Aphids dataset, the AM-TEEN model
consistently outperformed the TEEN model in terms of F1
score, demonstrating better handling of class imbalances.
Similar trends were observed in the Aphids combinations with
Agricultural Pests and DLFautoinsects datasets, where the
AM-TEEN model maintained higher F1 scores across
sessions, indicating its robustness in dealing with incremental
learning scenarios.

These results indicate that combining the median method
with attention mechanisms enhances the model’s performance
across different datasets. This combination consistently
achieves higher accuracy and demonstrates better resilience to
the challenges of incremental learning, outperforming baseline
approaches and maintaining accuracy over time. The
AM-TEEN model showcases its robustness and effectiveness
across various datasets, proving its capability to handle
incremental learning scenarios more efficiently than the TEEN
model. Additionally, the use of the F1 score as an evaluation
metric underscores the model’s improved performance in
managing class imbalances, further validating the
improvements introduced by our proposed methods.

4.3 Experiment 2

The AM-TEEN model was tested to determine its robustness
in classifying images from Aphids dataset when combined with
one or two additional datasets. In this experiment the Aphids
dataset included an external validation set of data, collected at
a different location and time, providing a diverse and challenging
test environment for the model. Additionally, we were focusing
on assessing model performance through precision, recall, and
F1-score metrics. The results are depicted in Fig. 9, which
illustrates varying performance levels across the datasets.

For the Aphids dataset, the classification outcomes (see
appendix B.2 for details) reveal a mixed performance with a
weighted average F1-score of 0.71. Specific challenges were
noted in accurately classifying classes with lower sample sizes
or lower data quality, such as Moth (F1-score of 0.43) and
Spider (F1-score of 0.36).

Upon integrating the Kaggle dataset, the model
demonstrated improved performance metrics (Table. 3),
including an overall accuracy increase to 76% and a weighted
average F1-score of 0.76. Notably, precision and recall for
classes like Thrips and Melanogaster remained high,
underscoring enhanced model sensitivity and specificity with
larger, more diverse datasets.

Further inclusion of the DLFautoinsects dataset, yielded a
nuanced effect on performance (see appendix Tables 10 and
11). While some classes like Water Drop and Reflection
maintained high scores, others, such as Spider and Moth, did
not show expected improvements. This suggests a
performance plateau, possibly indicating model saturation
where adding more data does not proportionally enhance
outcomes.

Table 3 shows the combined aphids and agricultural pests
datasets and the related per-class metrics. The per-class
confusion matrices and metrics for the additional datasets are
detailed in the appendix B.2, providing a granular view of
model performance across varied conditions. These findings
emphasize the potential benefits of dataset diversity up to a
saturation point, beyond which the marginal gains diminish.

4.4 Experiment 3
The goal in this experiment is to simulate practice as close

as possible, where more classes are available as base, and
classes are slowly added, to determine the point at which the
model’s performance begins to degrade significantly. We
investigated the performance of the AM-TEEN model when
trained with three combined Aphids, Agricultural Pests, and
DLFautoinsects datasets. Once all datasets are combined, the
total 62 classes were divided into 36 base classes and the 26
others were added one per incremental session. The results
indicate that the model holds up well initially but begins to show
a slight decline as more classes are added. Despite this, the
performance drop is not drastic. As mentioned, we started with
36 classes (60% of the total) as the base and incrementally
added the remaining classes one at a time per session.

Fig. 10 illustrate the accuracy and F1 score of the AM-TEEN
model across the incremental sessions. Initially, the model
maintains high accuracy, but this gradually decreases as more
classes are introduced. After adding approximately 17 classes,
the accuracy drops by about 7%, which seems to be the largest
dip in performance.

4.5 Results
The results from our experiments on the Aphids, Agricultural

Pests, DLFautoinsects, and CIFAR-100 datasets using the
TEEN, A-TEEN, and AM-TEEN models demonstrate that the
median method outperforms mean and mode methods in
maintaining accuracy across sessions. The inclusion of
attention mechanisms further boosts performance, ensuring
more stable and representative prototypes. Despite these
successes, challenges remain, such as the misclassification of
non-insect elements like water drops and reflections as insects,
highlighting areas for further model refinement. Fig. 11 shows
one the misclassified examples.

5 DISCUSSION, CONCLUSION & FUTURE WORK

As the global demand for agricultural productivity increases,
the need for advanced pest management solutions becomes
ever more critical. This paper presented the AM-TEEN model,
a novel application of Few-Shot Class Incremental Learning
(FSCIL) techniques designed to address the persistent
challenges of pest detection in agriculture. By integrating
median averaging and attention mechanisms, this model sets a
new benchmark for accuracy and adaptability in comparison to
base models. In this section, we summarize the key findings,
discuss the implications of our research, and propose
directions for future investigations to extend the capabilities of
incremental learning models.

5.1 Discussion
The integration of median prototyping and a channel attention

mechanism enhanced the performance of the AM-TEEN model,



Fig. 10: Accuracy and F1 Score of the AM-TEEN Model across Incremental Sessions

(a) Wasp (b) Water drop

Fig. 11: The misclassification of a water drop for an insect

leading to more accurate classifications and demonstrating the
effectiveness of these enhancements. The key takeaway is that
these methodologies not only optimized prototype generation
but also ensured that important features within the data were
dynamically highlighted, contributing to more precise outcomes.

One of the main strengths of the AM-TEEN model is its
robustness and adaptability. During external validation, the
model maintained high accuracy levels across larger and more
diverse datasets, highlighting its potential for real-world
applications. The incorporation of attention mechanisms
allowed the model to dynamically emphasize relevant features
and de-emphasize irrelevant ones, thereby improving both
precision and recall. This selective focus is particularly
beneficial in imbalanced datasets where certain classes have
fewer and more varied examples.

The performance of the median method can be attributed to
its robustness against outliers [21]. By using the median of the
embeddings to generate prototypes, this method effectively
reduced the influence of anomalous data points, leading to
more stable and representative prototypes. This characteristic
is particularly beneficial in imbalanced datasets where outliers

can disproportionately affect the mean, resulting in less reliable
prototypes.

The channel attention mechanism [20] enhanced the model’s
performance by dynamically emphasizing more relevant
features and de-emphasizing less relevant ones. This allowed
the model to concentrate on the most informative parts of the
feature space, thereby maintaining high accuracy and stability
across incremental learning sessions.

The results from our experiments underscore the relevance
of the AM-TEEN model for applications where new data
classes are continually added over time. Its ability to maintain
reasonable accuracy levels across multiple incremental
sessions makes it an applicable tool for dynamic and evolving
datasets, such as in agricultural pest monitoring or biodiversity
studies where new species may be discovered and need to be
integrated into existing models.

Overall, the AM-TEEN model significantly benefits from
integrating an attention mechanism and median prototyping. It
shows enhanced robustness in processing large datasets and
better handles incremental learning scenarios compared to the
baseline TEEN model. Despite these strengths, the model still
struggles with accurately distinguishing between insects and
non-insect elements, indicating limitations in its discriminative
power. Variability introduced by different data collection
methods (such as the Aphids data collection method versus
other datasets) and class imbalances could affect
performance, potentially biasing results towards the majority
class. Additionally, unannounced instances of previously
unseen classes present a challenge, creating a chicken and
egg problem: we need several instances to update our model
incrementally, but identifying these instances requires the
model to be updated, which may require extending the model
and/or user interface. Another critical consideration is domain
shift, where the inference data distribution differs from the
training data. While our experiments combined different
datasets to enrich the feature space, future research should
simulate domain shifts by training on one dataset and
performing class-incremental learning on another to better
reflect real-world scenarios.



5.2 Future Work
Looking ahead, there are several avenues for further

research and development. One promising direction is inspired
by the recent study ”Future-Proofing Class Incremental
Learning,” [18] which explores the use of pre-trained
text-to-image diffusion models to generate synthetic images for
training feature extractors in class incremental learning
settings. This approach could potentially address one of the
key challenges in FSCIL by providing a method to enhance
feature extractor training when limited classes are available
initially.

Future experiments could integrate synthetic image
generation into the AM-TEEN model, preparing the system for
new, unseen classes without the need for extensive real data.
This method has the potential to improve performance in
data-scarce environments, leading to more cost-effective and
scalable solutions for incremental learning. To address the
challenge of identifying previously unseen classes, one
proposed solution is to measure classification based on a
threshold and filter out lower confidence predictions, assigning
them to a new class category. When enough samples are
accumulated, a new session can be triggered to add them to
the model. Another approach could involve user interaction,
allowing users to designate new examples as a new class and
update the model once sufficient samples are collected.
Additionally, future work should explore simulating domain
shifts by training on one dataset and incrementally learning
from another to assess the model’s adaptability and robustness
with varied data inputs. Incorporating these strategies will
enhance the model’s practicality and robustness for real-world
applications, ultimately leading to improved pest management
solutions in agriculture and other domains.

5.3 Conclusion
In conclusion, the AM-TEEN model shows promise in

improving the efficiency and accuracy of pest detection
systems through the innovative use of FSCIL techniques.
Future research will focus on overcoming the existing
limitations and exploring new technologies like synthetic data
generation to enhance the model’s adaptability and
performance in dynamic agricultural environments.
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Appendix

A MATERIALS & METHODS

A.1 Imaging Setup
The images are gathered from an imaging setup placed in

both indoor and outdoor locations on farms and greenhouses
in the northern provinces of the Netherlands. The setup is
installed at the location and powered on to start capturing
images of moving, flying insects and objects. A secondary
camera scans a line of light at the focal point of the main
camera. If any changes occur in the pixel range of the
streaming line of light, the main camera and the flashlights are
triggered to take a shot. A yellow plate is also positioned within
the range of the main camera to provide a uniform background
for the images. The entire system is equipped with a GPU to
process the captured images. The system can be controlled
remotely via a Wi-Fi modem, and the network connection is
also used to transfer the images to cloud storage. Fig. 12
shows the setup at a farm.

The hardware specification details of the setup in use for
gathering the dataset is as follows:
• Main Camera:

– IDS 3990CP-C-HQ

– https://en.ids-imaging.com/store/u3-3990cp-rev-2-2.html

– Main Camera lens:

– Fujifilm CF25ZA-1S

– https://en.ids-imaging.com/store/lens-fujifilm-cf25za-1s-
25-mm-1-1.html

• Line scan Camera:

– IDS 3060CP-M-GL

– https://en.ids-imaging.com/store/ui-3060cp-rev-2.html

– operating in 1936 x 2 resolution, 2600fps

– Linescan Camera lens:

– Fujifilm HF25XA-5M

– https://en.ids-imaging.com/store/lens-fujifilm-hf25xa-5m-
25-mm-2-3.html

• Waterproof casings for both cameras:

– https://www.get-cameras.com/Machine-vision-aluminium-
camera-housing-enclosure-waterproof-IP67?Product=
864105090&Lng=en

• Main Illumination:

– Custom-built by Vision Hardware Partner. 4x 20cm white
LED bar lights

– https://www.vhponline.nl/2017/04/04/bar-light-30mm-wide

– Operates at 37V/12.5A for all four bars, 100µs pulse length

– LED driver:

– VHP Lightning 12F

– https://www.vhponline.nl/2018/07/16/lightning-12f

• Line illumination:

– 40cm Luxalight LED bar, wavelength 735nm, 60W power

– https://www.luxalight.eu/en/products/led-engine/luxalight-
industrial-led-fixture-opaline-cover-far-red-735nm-
242x16mm-24-volt

– Operates at 37V/12.5A for all four bars, 100µs pulse length

– LED driver:

– VHP Lightning 12F

– https://www.vhponline.nl/2018/07/16/lightning-12f

• GPU:

– NVIDIA Jetson Orin Nano 8GB with 1TB SSD

– https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-orin/

• 5G router:

– Teltonika RUTX50

– https://teltonika-networks.com/products/routers/rutx50

Fig. 12: Imaging setup in the farm



B EXPERIMENTS & RESULTS

B.1 Experiment 1
The full metrics tables

Table 4: Unseen Accuracy per session for the three different prototype
generation methods (mode, mean and median) on Aphids

Method Model Session 0 Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8

Mean TEEN - 100 85.85 67.22 67.95 67.58 71.53 68.46 61.16
A-TEEN - 100 83.96 67.22 71.54 68.95 72.67 72.03 61.76

Mode TEEN - 75.00 54.48 57.15 66.16 60.55 65.04 59.00 52.69
A-TEEN - 75.00 62.03 65.09 70.60 61.71 63.92 61.28 53.39

Median TEEN - 100 82.07 70.75 76.46 74.39 76.89 73.78 67.63
AM-TEEN - 100 87.74 75.16 79.86 74.42 76.92 73.15 69.45

Table 5: Seen Accuracy per session for the three different prototype
generation methods (mode, mean and median) on Aphids

Method Model Session 0 Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8

Mean TEEN - 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33
A-TEEN - 91.33 84.67 84.67 84.67 84.67 84.67 84.67 84.67

Mode TEEN - 94.67 94.67 94.67 94.67 94.67 94.67 94.67 94.67
A-TEEN - 94.67 94.67 94.67 94.67 94.67 94.67 94.67 94.67

Median TEEN - 91.33 91.33 91.33 91.33 88.00 88.00 88.00 88.00
AM-TEEN - 98.00 98.00 98.00 98.00 91.33 91.33 91.33 91.33

Table 6: Harmonic-Mean per session for the three different prototype
generation methods (mode, mean and median) on Aphids

Method Model Session 0 Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8

Mean TEEN - 89.71 83.53 73.60 74.04 73.82 76.12 74.34 69.82
A-TEEN - 95.47 84.31 74.94 77.55 76.00 78.21 77.84 71.42

Mode TEEN - 85.71 70.53 72.74 79.63 75.43 78.82 74.21 69.01
A-TEEN - 85.71 76.56 78.86 82.77 76.32 77.99 75.99 69.61

Median TEEN - 95.47 86.46 79.74 83.24 80.62 82.07 80.26 76.48
AM-TEEN - 98.99 92.58 85.07 88.00 82.01 83.51 81.24 78.90

Table 7: Unseen Accuracy per Session for Base and
AM-TEEN Models on Aphids, CIFAR-100, Aphids +
Agricultural Pests(Aphids+), and Aphids + Agricultrual Pests +
DLFautoinsects(Aphids++)

Dataset Model Session 0 Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8 Session 9

Aphids TEEN - 100 82.07 70.75 76.46 74.39 76.89 73.78 67.63 NA
AM-TEEN - 100 87.74 75.16 79.86 74.42 76.92 73.15 69.54 NA

CIFAR-100 TEEN - 27.60 24.80 22.87 21.85 22.64 23.77 23.11 22.87 NA
AM-TEEN - 30.40 28.40 25.53 25.05 25.16 25.50 24.71 24.10 NA

Aphids + TEEN - 74.38 73.89 67.72 65.79 61.00 61.80 60.25 59.33 62.86
AM-TEEN - 79.80 79.42 74.75 71.97 66.44 66.42 65.55 63.27 66.32

Aphids ++ TEEN - 72.77 74.64 70.31 67.98 68.78 68.81 67.70 64.77 64.34
AM-TEEN - 73.47 76.14 70.03 69.79 69.82 69.08 69.15 66.08 65.84

B.2 Experiment 2
The full metrics tables and figures

B.3 Datasets
The datasets complementary images and information



Table 8: Seen Accuracy per Session for Base and AM-TEEN Models on Aphids, CIFAR-100, Aphids + Agricultural Pests(Aphids+), and
Aphids + Agricultrual Pests + DLFautoinsects(Aphids++)

Dataset Model Session 0 Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8 Session 9

Aphids TEEN - 91.33 91.33 91.33 91.33 88.00 88.00 88.00 88.00 NA
AM-TEEN - 98.00 98.00 98.00 98.00 91.33 91.33 91.33 91.33 NA

CIFAR-100 TEEN - 75.57 74.95 74.05 73.12 71.97 71.32 71.02 70.40 NA
AM-TEEN - 75.85 75.22 74.45 73.78 72.65 72.08 71.93 71.05 NA

Aphids + TEEN - 95.24 94.85 93.45 91.27 85.27 84.88 84.88 84.63 84.63
AM-TEEN - 93.15 92.76 92.51 90.47 80.08 80.08 78.90 78.90 78.65

Aphids ++ TEEN - 82.96 81.37 79.58 79.25 76.43 75.84 75.59 74.82 74.82
AM-TEEN - 88.69 86.03 84.52 84.39 81.64 79.62 79.62 79.49 78.83

Table 9: Harmonic Mean per Session for Base and AM-TEEN Models on Aphids, CIFAR-100, Aphids + Agricultural Pests(Aphids+), and
Aphids + Agricultrual Pests + DLFautoinsects(Aphids++)

Dataset Model Session 0 Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8 Session 9

Aphids TEEN - 95.47 86.46 79.74 83.24 80.62 82.07 80.26 76.48 NA
AM-TEEN - 98.99 92.58 85.07 88.00 82.01 83.51 81.24 78.90 NA

CIFAR-100 TEEN - 40.43 37.27 34.94 33.65 34.44 35.65 34.88 34.53 NA
AM-TEEN - 43.40 41.23 38.02 37.40 37.38 37.67 36.79 35.99 NA

Aphids + TEEN - 83.53 83.07 78.53 76.46 71.12 71.53 70.48 69.76 72.14
AM-TEEN - 85.96 85.58 82.69 80.16 72.63 72.61 71.61 70.23 71.96

Aphids ++ TEEN - 77.53 77.86 74.66 73.18 72.40 72.16 71.43 69.43 69.18
AM-TEEN - 80.36 80.78 76.59 76.40 75.27 73.98 74.01 72.17 71.75

Table 10: External Validation per Class Metrics on Aphids

Class Precision Recall F1-Score

Thrips 0.50 1.00 0.67
Melanogaster 1.00 1.00 1.00

Wasp 0.60 0.75 0.67
Winged Aphid 0.82 0.67 0.73

Spider 0.29 0.50 0.36
Wingless Aphid 0.84 0.73 0.78

Crane Fly 0.62 0.38 0.48
Reflection 0.92 1.00 0.96

Water Drop 1.00 0.27 0.43
Moth 0.27 1.00 0.43

Weighted Average 0.79 0.71 0.71

Table 11: External Validation per Class Metrics on Aphids,
Agricultural Pests, and DLFautoinsects

Class Precision Recall F1-Score

Thrips 0.73 1.00 0.84
Melanogaster 0.76 1.00 0.87

Wasp 0.67 0.50 0.57
Winged Aphid 0.93 0.48 0.63

Spider 0.25 0.25 0.25
Wingless Aphid 0.74 0.91 0.82

Crane Fly 0.67 0.62 0.64
Reflection 1.00 1.00 1.00

Water Drop 1.00 0.82 0.90
Moth 0.33 0.67 0.44

Weighted Average 0.80 0.75 0.75



Confusion Matrix per Class for Aphids

Confusion Matrix per Class for Aphids and Agricultural Pests from Kaggle

Confusion Matrix per Class for Aphids, Agricultural Pests from Kaggle, and DLFautoinsects
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Predicted Label

Halyomorpha halys (Stål)
earthworms

Dolerus tritici Chu
moth_1
moth_2

Chauliops fallax Scott
melanogaster

Strongyllodes variegatus (Fairmaire)
Spilosoma obliqua (Walker)

Empoasca flavescens (Fabricius)
aphid_winged

Corythucha marmorata(Uhler)
Stollia ventralis (Westwood)

beetle
Laodelphax striatellus (Fallén)

wasp_1
wasp_2

Aulacophora indica (Gmelin)
Dryocosmus KuriphilusYasumatsu

snail
Eurydema dominulus (Scopoli)

Graphosoma rubrolineata (Westwood)
earwig

Pieris rapae (Linnaeus)
Sesamia inferens (Walker)

catterpillar
Porthesia taiwana Shiraki
Nilaparvata lugens (Stål)

water_drop
spider

Nezara viridula (Linnaeus)
Callitettix versicolor (Fabricius)
Riptortus pedestris (Fabricius)

Cicadella viridis (Linnaeus)
Scotinophara lurida (Burmeister)

crane_fly
Chilo supperssalis (Walker)
Diostrombus politus Uhler

Maruca testulalis Gryer
ants

Leptocorisa acuta (Thunberg)
Dicladispa armigera (Olivier)

Luperomorpha suturalis Chen
Corythucha ciliata (Say)

Cletus punctiger (Dallas)
Phyllotreta striolata (Fabricius)

Chromatomyia horticola(Goureau)
weevil

Spodoptera litura (Fabricius)
thrips

Ceutorhynchus asper Roelofs
Iscadia inexacta (Walker, 1858)

slug
grasshopper

bees
Lycorma delicatula (White)

Ceroplastes ceriferus (Anderson)
Bemisia tabaci (Gennadius)

Dolycoris baccarum (Linnaeus)
aphid_wingless

reflection
Plutella xylostella (Linnaeus)

Tr
ue
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Fig. 13: Confusion Matrices for Various Datasets



The Aphids Classes: Aphid winged-outdoors, Aphid wingless, Crane fly, Melanogaster, Moth, Spider, Thrips, and Wasp

The Agricultural Pests Classes: Beetle, Snail, Catterpillar, Wasp, Earwig, Earthworms, Weevil, Moth, Grasshopper, Bee, Slug,
Ants



The DLFautoinsects Classes: Halyomorpha halys (Stål), Dolerus tritici Chu, Chauliops fallax Scott, Strongyllodes variegatus
(Fairmaire), Spilosoma obliqua (Walker), Empoasca flavescens (Fabricius), Corythucha marmorata(Uhler), Stollia ventralis

(Westwood), Laodelphax striatellus (Fallén), Aulacophora indica (Gmelin), Dryocosmus KuriphilusYasumatsu, Eurydema dominulus
(Scopoli), Graphosoma rubrolineata (Westwood), Pieris rapae (Linnaeus), Sesamia inferens (Walker), Porthesia taiwana Shiraki,

Nilaparvata lugens (Stål), Nezara viridula (Linnaeus), Callitettix versicolor (Fabricius), Riptortus pedestris (Fabricius), Cicadella viridis
(Linnaeus), Scotinophara lurida (Burmeister), Chilo supperssalis (Walker), Diostrombus politus Uhler, Maruca testulalis Gryer,

Leptocorisa acuta (Thunberg), Dicladispa armigera (Olivier), Luperomorpha suturalis Chen, Corythucha ciliata (Say), Cletus punctiger
(Dallas), Phyllotreta striolata (Fabricius), Chromatomyia horticola(Goureau), Spodoptera litura (Fabricius), Ceutorhynchus asper

Roelofs, Iscadia inexacta (Walker, 1858), Lycorma delicatula (White), Ceroplastes ceriferus (Anderson), Bemisia tabaci (Gennadius),
Dolycoris baccarum (Linnaeus), Plutella xylostella (Linnaeus)



Agricultural Pests Class Distribution



DLFautoinsects Class Distribution


