
Optimizing Outdoors Aphid and Insect Detection: A Few-Shot
Learning Approach

NHL Stenden Lectoraat in Computer Vision & Data Science

Arsalan Kakaei
Supervisors: Lucas Ramos

Abstract—Aphids pose a significant threat to crop yield and quality, leading to economic concerns in agricultural production.
Traditional pest monitoring methods are time-consuming, prompting the need for efficient visual image-based techniques. In outdoor
data collection, obtaining large amounts of data for deep learning can be challenging. Therefore, we opted for a Few-shot learning
approach. Our study focuses on Few-shot learning to quickly and adaptively identify aphid species with minimal samples. Utilizing
prototypical networks, this study investigates two dataset compositions: a 3-class set (aphid, insects, and background) and a 9-class
set (2 aphid classes, 6 insect classes, and background). We apply 3 different CNNs as the backbone of Prototypical Networks to both
datasets creating 6 scenarios. For each scenario, we evaluate and compare the performance of CNNs. This involves assessing 6
different distance methods, two of which are newly introduced compared to prior research. The goal is to examine the effectiveness of
backbones and distance methods in diverse experimental settings and find a reliable way to detect aphids using a few samples. The
experiment with Resnet50, 3-class dataset, and cosine similarity method, as one of our scientific contributions, showed impressive
recall values of 98% for aphid classification and 99% for overall insect classification. Notably, Euclidean distance and Mahalanobis
divergence proved reliable, with Euclidean being more computationally efficient. Larger CNNs yielded superior results, but their
resource demands should be considered. The 9-class dataset outperformed the 3-class dataset, highlighting the importance of data
richness. Our findings affirm the reliability of prototypical networks as a dependable few-shot learning method, achieving satisfactory
levels of aphid detection.

Index Terms—Few-shot learning, Prototypical networks, Aphid, SqueezNetn, Resnet18, Resnet50

1 INTRODUCTION

In agriculture, identifying and classifying crop pests is a significant
challenge because many pest species look alike [1]. Insects are a
major threat to crop yield and quality worldwide [2]. For example, in
2013, the sorghum aphid, Melanaphis sorghi (Theobald), caused
economic concerns during sorghum production in the US [3]. Earlier
studies have highlighted the detrimental impact of various aphid
species on crops and agricultural yields. Examples include the black
bean aphid, pea aphid, and green peach, which have been identified as
particularly harmful to agricultural production[4]. Monitoring insect
pests quickly and reliably is crucial for predicting their populations
and taking control measures [2]. This helps in choosing effective
pesticides or biological methods to stop pests from spreading further
[1].

Manual pest classification is difficult, time-consuming, and
requires expertise [1]. To address this, various techniques exist for
detecting and classifying pests. They fall into several categories such
as acoustic sensors for noisy insects, photoelectric and radar sensors,
and visual image-based methods. Visual image methods hold
immense potential as they can identify pests by analyzing their
distinctive features, offering the advantages of cost-effectiveness,
efficiency, and precision [5] [6].
Currently, sticky plates are used in potato farms around Friesland to
gather aphid samples and then to manually count the aphids. This
method is both time-consuming and requires expertise. This process
by capturing data from the sticky plates and creating a dataset. We
employ computer vision to detect aphids on these plates and also
count the number of insects for each species of interest. More
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recently, we have transitioned to using a camera in an outdoor setting
instead of sticky plates to collect data efficiently.[7].

Some insect pests have random characteristics, and the distribution
of plant pests is transnational. This makes it hard to collect samples.
Deep learning models need large datasets for training. Lack of image
data can lead to overfitting, making it challenging to detect sudden,
unknown insect pests [2]. Many studies on pest detection rely on
deep learning (DL)[2]. Although DL performs acceptable results
when abundant labeled data is available, there is an increasing interest
in scenarios with limited images, particularly in fields facing data
scarcity, such as identifying insect pest species [2]. Few-shot learning
has been proposed to address this issue. It is an emerging method that
uses minimal training data, making data collection easier in various
fields[1].

This paper discusses how few-shot learning can be used to detect
insect species using a minimal number of samples. In outdoor
settings, new species may appear unexpectedly. Traditional models
might struggle to recognize them, highlighting the need for
adaptability. Few-shot learning proves valuable by swiftly
accommodating new information, making it a fitting solution for
handling unforeseen species in outdoor environments. Our paper
explores the effectiveness of few-shot learning in addressing
detecting insect species using a minimal number of samples. Our
primary objective was to assess whether using a more complex or
simpler backbone would enhance performance. Additionally, we
investigated the impact of employing distance metrics better suited
for comparing features extracted from diverse backbone networks.
By combining these models, we aimed to attain the highest accuracy
in detecting aphids. Our approach has the potential to help farmers
make well-informed decisions regarding the timely deployment of
suitable insecticides or other pest management strategies, ultimately
bolstering agricultural productivity and food security.



2 STATE OF THE ART

Deep learning has recently been applied to pest recognition to help
farmers take prompt and proper actions to prevent reductions in crop
quantity and quality. Deep learning typically demands an extensive
corpus of annotated training data, a task frequently delegated to
domain specialists for meticulous annotation. However, because
collecting insect images in natural environments is difficult and
obtaining proper annotations from specialists is costly, deep learning
is not an optimized way for pest recognition tasks. [8].

Recently, few-shot learning has been used as a method for object
detection and classification based on just a few training samples. It
aims to learn new concepts from a few labeled examples, reducing
the difficulty of creating large datasets in some cases. Therefore,
few-shot learning could help identify unknown pests by relying on
the expertise of insect specialists once a few samples are
recognized[3] and [9].

For example, the work of [8] supports the use of few-shot learning
methods for spotting plant diseases in their survey paper. They
highlight the model’s impressive results, especially when dealing
with limited samples. Additionally, they discuss various types of
augmentation to create diverse images and enhance small datasets,
noting that physical transformation is a more straightforward
implementation.

In a similar vein, in [3], they surveyed more than 27 studies
focusing on classifying and detecting insects in field images using
deep learning. More than 50% of these studies incorporated data
augmentation to enhance their results. The majority of researchers
employed different deep learning models such as Alexnet, ResNet,
Bridgenet-19, and YOLO. Remarkably, among the studies referenced
[1], only one embraced few-shot learning, underscoring its
effectiveness in identifying previously unknown insects. This study
not only diverged from conventional approaches by utilizing less data
but also yielded remarkably high accuracy. This outstanding
performance was particularly noteworthy when compared to other
research cited in [3]. Additionally, the research highlighted various
methods of data collection from fields, including sticky traps, on
plants, and in traps.

In [1], researchers designed an insect detection system using the
NBAIR and Li datasets. They effectively classified 50 different insect
species by employing prototypical networks. Euclidean distance
served as the distance method for their prototypical networks, and
they utilized 7 diverse models as backbones to extract input data
features. Their designed CNN outperformed the other 6 bigger
models (GoogLeNet, AlexNet, VGG-16, VGG-19, ResNet-50,
ResNet-101), achieving accuracy rates above 95% and 96% for each
dataset, respectively.

Notably,[10] expanded the use of Prototypical Network-based
few-shot learning by testing various distance metrics, such as
Euclidean Distance, Mahalanobis, Kullback–Leibler, and
Itakura–Saito. These metrics determined the proximity between
prototypes and query insects, with a single backbone serving as the
embedding part of their models. Their study employed a novel
dataset, IP102, comprising 102 categories of adult insect images and
early-stage insect images. The most successful results were achieved
using the Kullback–Leibler divergence measure, reaching an
accuracy of 86.33% for adults and 87.91% for early stages. Both
Matching Networks and Prototypical Networks were explored,
revealing that Prototypical Networks produced superior results in
classifying their dataset.

The research mentioned above inspired me to explore various
distance methods, experiment with different backbones, and
investigate two distinct dataset compositions.

Fig. 1. The new approach captures flying insects using a camera
directed at a yellow sticky plate. This setup includes LED bars, a trigger,
and a line-scan camera recording at 1936x2 resolution. When an insect
disrupts the trigger’s light, the main camera captures a focused image
illuminated by flashing LEDs for 133 µs, saving it at 4512x4512 pixels
resolution. The camera was strategically placed on several Frisian farms
to capture the necessary data.

3 MATERIALS AND METHODS

3.1 Dataset

In this study, a comprehensive dataset was created using outdoor
flying insect images captured with a camera setup in the Frisian
farms. When an insect crossed the lens of the setup, the camera
captured its image and transmitted it to a server for further
processing, Fig 1 [7].

These images served as our primary data source, which we
meticulously cleaned and categorized into eight distinct insect types
and background classes, shown in Fig 2. We added water drops to our
classes since our camera often captures these elements. Additionally,
during data preprocessing, reflections were treated as separate
objects, requiring separate detection.
Once our data was prepared, we divided it into 3 sets for our few-shot
learning experiments, shown in Table 1. In our first dataset, we
categorize insects into 8 main classes, and there is an additional
background class featuring water droplets and reflections. Our
primary research focus is on the two classes of aphids: aphid and
wingless aphid. Additionally, we include classes like moth and wasp,
which are of particular interest to farmers for counting purposes
Furthermore, we generated a 3-class dataset as our second dataset.
This involved using the same data but organizing it into three
categories: one for aphids, another for a combined group of the
remaining 5 insects labeled as the ”insects” class, and the third for the
backgrounds class Table 2.

The cleaned dataset was then partitioned, with 80 percent of the
data allocated for the training set (Support set) and validation set,
while the remaining 20 percent was specifically designated for the
test set, known as the Query set in few-shot learning.



Fig. 2. This figure shows examples of the insect classes in our study,
along with two backgrounds featuring water drops and reflections.

Name Train Validation Test
Aphid 14 14 53
Aphid Wingless 14 14 44
Crane Fly 85 14 25
Melanogaster 85 14 25
Moth 14 16 5
Spider 18 14 8
Thrips 41 18 15
Wasp 17 15 8
Backgrounds 145 34 45

Table 1. This table shows information about the first dataset consisting
of 8 main insect classes, with a background class including water
droplets and reflections.

3.2 Few-Shot learning
Few-shot learning involves learning from a small amount of data and
can be implemented in various ways [1]. Metric-based few-shot
classification methods predict based on similarities between query
images and support examples. These methods include Siamese
Neural Networks, Matching Networks, Prototypical Networks, and
Graph Neural Networks. Prototypical Networks represent each class
and classify query points based on their distance from these
prototypes [2]. Data augmentation is essential to expand training
data, especially when sampling is challenging, and it includes
geometric transformations, color space adjustments, image mixing,
generative adversarial networks, and neural style transfer [2][3][8].

3.3 Prototypical network
Prototypical Networks operate on the concept that there is an
embedding where points cluster around a single prototype
representation for each class [11]. These prototypes are created by
calculating the mean of the data belonging to each respective class,
providing a central representation that captures essential features for
classification. To do this, we learn a non-linear mapping of the input
into an embedding space using a CNN and take a class’s prototype to
be the mean of its support set in the embedding space[3].
Classification is then performed for an embedded query point by
simply finding the nearest class prototype. This is done by creating a
linear classifier based on the distance method[11].

As an example shown in Fig 3, for each class, a prototype indicator
is calculated using a function, such as the mean. When a new data
point, represented by X, is introduced to the Prototypical Network, its
distance to the prototypes C1, C2, and C3 is computed. The data
point is then assigned to the class with the smallest distance, which in
this case is C1. In Prototypical Networks, we utilize specific terms to
elucidate the settings employed in training the model with data. First,
we refer to the classification of the number of classes as N-Ways.
Secondly, the images fed to Prototypical Networks for creating

Name Train Validation Test
Aphids 14 14 97
Insects 260 91 86
Backgrounds 145 34 45

Table 2. 3-Ways dataset information table. It grouped two distinct aphid
classes, as detailed in Table 1, under the categories of aphid, water
drop, and reflection, treating them collectively as background elements.
The remaining insect classes are categorized simply as ”insects.”

prototypes, such as C1, C2, and C3, are designated as the Support
Set. The number of images belonging to the Query Set for each class
is represented as N-Shots. Moving on, we use ”N-Query” or simply
”Q” to denote the number of images in the Query Set for each class.
In this example, represented by X, these images are fed to
Prototypical Networks to compare their distance with prototypes and
train our model.

In this study, we have organized our data into distinct classes of
insects, each represented by five reference images, known as
”5-Shots1.” To tackle the task of classifying insects, our model
computes the class prototypes by determining the mean feature
vectors for each class. We then leverage the 6 different distance
methods consisting of Euclidean Distance (EU), Mahalanobis
distance (MA), Kullback–Leibler divergence (KL), Itakura–Saito
distance (IS), Wasserstein Distance (WA), and Cosine Similarity
(CO) to measure the dissimilarity between these class prototypes and
the query image. This distance computation forms the basis for our
loss measurement during each training epoch.

We selected the first four distance methods based on a similar
study [10] for result comparison. Additionally, we included the
Wasserstein Distance (WA) due to its effectiveness in minimizing the
negative impact of irrelevant regions, as suggested in related few-shot
learning research [12]. Furthermore, we applied Cosine Similarity
(CO) in our tests, inspired by the work of [13] where CO
demonstrated the ability to quickly learn novel categories without
forgetting the base categories and achieved favorable outcomes.

3.4 Training Process
Our approach follows a straightforward pipeline (Fig 4). Initially, we
start by loading data from a dataset that contains color images. As a
preprocessing step, we resize these images2 to a standardized
256x256 resolution. To enhance the diversity of our dataset
concerning evaluation tasks, we employ a Task Sampler. The Task
Sampler is responsible for creating the support set and query set to
feed our model. For each training episode, the support set includes
N-Shots of images and their corresponding labels for each class,
while the query set consists of N-Queries of images and labels per
class. Additionally, the Task Sampler helps enhance data diversity by
applying simple horizontal image flips as augmentations3.

Then, we use 3 pre-trained models, ResNet18, SqueezeNet, and
Resnet50 as our Convolutional Neural Network (CNN) architecture
for separate experiments. Initially, we feed the support set and the
query set data into our CNN to extract essential features from our

1We chose to use five shots in our experiments because it is a common
practice in the existing literature. This consistent usage across various studies
allows for better comparability with the results obtained in our research. By
aligning with established standards in the field, we ensure that our findings can
be effectively compared to and contextualized alongside those of previously
mentioned research, contributing to a more comprehensive understanding of
the overall landscape in the domain.

2Most of our images are standardized to 400x400 pixels, but a few have
smaller dimensions ranging from 150 to 300x300 pixels.

3In our experiment the number of classes (N-Ways) = (9 and 3), N-Shots=5
and N-Queries=9



Fig. 3. Showcases an example of the prototypical network applied to 3 classes (3-Ways), each consisting of 5 members (5-Shots).

Fig. 4. This figure illustrates the key stages of our pipeline.

images. From CNN’s output, we compute the mean of the extracted
features from the support set for each class, creating prototypes (Fig 5
- Steps 1 and 2). Subsequently, we gauge the distance between these
prototypes and the features extracted from the query set (Fig 5 - Step
3). This process helps in understanding the dissimilarity between
classes, a crucial step in our few-shot learning approach. We engage
in the training phase, leveraging the power of a Prototypical network.
This is where our model learns from the data, adapting to the unique
characteristics of the insect classification task.

Finally, we conduct a comprehensive evaluation of the trained
model’s performance using the test set (Fig 5 - Step 4). We employ
evaluation metrics such as precision, recall, F1 score, and accuracy to
assess the outcomes of our experiments. Among these metrics,
special emphasis is placed on the recall value. This is because our
main goal is to accurately identify all true positive instances of
aphids, and achieving this objective relies heavily on the recall
metric. This concluding step provides valuable insights into the
model’s accuracy and its suitability for the insect classification task.
Our methodological approach in this pipeline allows for a thorough
investigation of the effectiveness of few-shot learning in insect

classification.

3.5 Backbones
3.5.1 Resnet18

For one of our experiments, we opted for the ResNet18 CNN due to
its smaller size, making it suitable for our relatively modest dataset.
We enhanced the architecture by adding a Flatten layer to ResNet18
(Fig 6) and utilized a pre-trained version. This choice is influenced by
a reference paper that used ResNet18 as the main model for
prototypical networks [11].

3.5.2 SqueezNet

In another experiment, we employed SqueezeNet to compare a
smaller CNN with Resnet18. We utilized a pretrained SqueezeNet,
where we made modifications by removing the classifier layer.
Instead, we introduced an Average Pooling layer and a Flatten layer
to extract features from our inputs for use in our model (Fig 6).

3.5.3 Resnet50

In a different test, we employed Resnet50 to assess the outcomes of
training our model with a larger backbone, comparing it to the results
obtained with Resnet18. To modify the architecture, we added a
Flatten layer to ResNet50 and used a pretrained version (Fig 6). We
made this decision based on a reference paper refer to in the State of
the Art section, which highlighted ResNet50 as one of the widely
used CNNs for classifying insects [1].

3.6 Distances
In the following formulas, X represents a prototype of support data, Y
denotes new data (Query) that needs to be compared with our
networks, and n stands for the number of classes (N-Way).



Fig. 5. This figure breaks down the essential components of our model. We utilize three different CNN backbones, Resnet18, SqueezeNet, and
Resnet50, for various experiments, employing them separately.

3.6.1 Euclidean Distance (EU)
The Euclidean distance between two vectors X and Y is calculated
using the formula:

dist(X ,Y ) =

√
n

∑
i=1

(Xi −Yi)2 (1)

The EU measures the straight-line distance between two points in
the n-dimensional space. It is widely used for comparing the overall
spatial difference between vectors.

3.6.2 Mahalanobis Distance (MA)
The Mahalanobis distance between vectors X and Y is computed as
follows:

dist(X ,Y ) =
√

(X −Y )T S−1(X −Y ) (2)

Where S is the covariance matrix. MA considers the correlation
between dimensions, providing a more accurate measure of distance in
the presence of correlated features. This equation attempts to solve the
Euclidean distance problem when the data have a linear correlation[4].

3.6.3 Kullback–Leibler Divergence (KL)
The Kullback–Leibler divergence between probability distributions X
and Y is given by:

dist(X ,Y ) =
n

∑
i=1

Xi log
(

Xi

Yi

)
(3)

The Kullback–Leibler divergence measures the difference between
two probability distributions. It is commonly used in information
theory to quantify how one distribution diverges from another.

3.6.4 Itakura–Saito Distance (IS)
The Itakura–Saito distance between spectra X and Y is defined as:

dist(X ,Y ) =
n

∑
i=1

(Xi/Yi − log(Xi/Yi)−1)
2

(4)

IS considers the logarithmic difference between spectral
components and is commonly used in speech and audio processing.

3.6.5 Wasserstein Distance (WA)

The Wasserstein distance between distributions X and Y is given by:

dist(X ,Y ) = inf
γ∈Π(X ,Y )

∫
Rn×Rn

∥x− y∥γ(dx,dy) (5)

The Wasserstein Distance measures the minimum cost to transport
mass from one distribution to another. Here, X and Y are probability
distributions, γ represents the set of all joint distributions with
marginals X and Y , and ∥x− y∥ is the distance between elements x
and y in the distribution. In simpler terms, γ represents the various
ways we can combine elements from X and Y as we calculate the
overall transportation cost.

3.6.6 Cosine Similarity (CO)

The Cosine Similarity between vectors X and Y is defined as:

dist(X ,Y ) =
X ·Y

∥X∥ · ∥Y∥
(6)

CO measures the cosine of the angle between two vectors. It is
commonly used for comparing the orientation of vectors, providing a
measure of similarity rather than dissimilarity.

4 EXPERIMENTS

In this study, we employed prototypical networks, structuring the
research into two scenarios to assess the effects of different dataset
compositions, as mentioned in 3.1. Our focus was on testing various
distance methods (EU, KL, IS, MA, WA, and CO) and selecting the
best one among them in terms of detecting positive instances of
aphids. Additionally, we compared the performance of 3 distinct
Convolutional Neural Networks (CNNs) – Resnet18, SqueezeNet,
and Resnet50 – serving as the backbone for our prototypical
networks.



Fig. 6. On the left, modifications were made to the SqueezeNet by
removing its classifier layer. Instead, an average pooling layer and
a Flatten layer were added in place of the removed classifier. In the
middle, a Flatten layer was added to the ResNet18 model. On the right
side, a Flatten layer was added to the ResNet50 model. Furthermore,
the number of parameters for each CNN is indicated below its diagram,
where ’M’ represents million.

4.1 Experiment I

In this experiment, our dataset comprises 9 classes, as outlined in
Table 1. To train our model, we utilize 6 distinct distance calculation
methods: EU, KL, IS, MA, WA, and CO. The experiment is carried
out with the following parameter settings: N-Ways set to 9, N-Shots
set to 5, and Q set to 9. We conduct this experiment independently for
each of our 3 different CNNs (SqueezNet, ResNet18, and ResNet50).

Furthermore, we employ 14 images for each aphid class, aligning
with the few-shot learning concept of utilizing a limited amount of
input data. For the remaining classes, a larger amount of data is used.
Each experiment episode is set to 50, and within each episode, a
batch of data is randomly selected, comprising 5 support images and
9 query images. The model is then trained based on this batch.

The training process spans 50 epochs, in each epoch, the model is
trained across 20 episodes. Each episode involves using a single batch
of data, which comprises the support set and the query set images for
each class. Once the data is input, as depicted in Fig 5, the model
undergoes training through calculations performed on this dataset.
Throughout each epoch, the model undergoes evaluation on our
validation dataset to assess its performance and save the best model.
After completing the training, we compute evaluation matrices to
determine the effectiveness of each distance method and identify
which one performs better.

4.2 Experiment II

In our second experiment, we conducted a separate experiment
involving 3 categories: aphids, other insects, and background Table 2.
The objective of this comparative test is to assess whether grouping
other insects and aphids, along with the background in 3 classes,
yields better results than classifying each insect separately.

Moreover, similar to Experiment I, we utilize 14 images for the

aphid class. We follow the same data utilization pattern for the other
two classes as in Experiment I (Table 2). This ensures consistency
with the approach of using fewer images for aphid classes, aligning
with the principles of few-shot learning, while allowing for a broader
dataset for the remaining classes.

During the test phase, we set N-Ways to 3, N-Shots to 5, and Q to
9. Similar to Experiment I, this test uses all 6 distance methods and
all 3 backbones. The remaining parameters remain consistent with
Experiment I.

4.3 Experiments Setups
The model processes color images in RGB format, standardizing their
size to 256x256 pixels. To enhance data diversity, we apply a
straightforward random horizontal flip augmentation. Throughout
each test, we maintain consistency by using the same random seed,
ensuring a fair comparison of results. Our experiments are conducted
on a single GPU (NVIDIA A40-12C vGPU (12GB)) for
computational efficiency.

5 RESULTS

In the analysis of the results, our focus is on aphids, particularly the
recall value. To provide a more accurate comparison, we used the
weighted average for calculating aphids’ recall, precision, and
F1-score collectively. We intentionally refrain from mentioning other
evaluation metrics like precision and F1-score because our primary
emphasis is on achieving a high rate of detecting positive instances of
aphids. The models in our study learn to distinguish between classes
by extracting image features using various distance methods.
Alongside the Euclidean distance, we explored the outcomes of
employing the Mahalanobis distance, Kullback–Leibler divergence,
Itakura–Saito distance, Wasserstein Distance, and Cosine Similarity.
These methods were incorporated as dissimilarity measures for
classifying insects in our datasets and applied across both
Experiments I and II. Moreover, we examined the effects of all 3
backbones separately in our experiments. The bold numbers in our
results highlight the superior distance method and its corresponding
recall, providing a clear indication of the optimal performance in each
experiment.

5.1 Experiment I
In our first experiment, we trained and tested prototypical networks
with a 9-class dataset using our modified backbones. We conducted a
series of different experiments to assess our approach. For each
distance method considered, we assessed tasks involving 5 shots, and
the results are summarized in Table3 and Table4. Notably, bold
numbers in the table highlight the best-performing distance method
along with its corresponding recall for this specific experiment.

5.2 Experiment II
In our second experiment, we conducted training and testing of
prototypical networks using a 3-class dataset using our modified
backbones with the same situation as experiment I. We performed a
sequence of experiments to evaluate our approach. For each distance
method examined, we evaluated tasks involving 5 shots, and the
outcomes are summarized in Table3 and Table4.

5.3 Comparing the experiments’ best results
Here, we present the optimal outcomes for all experiments, with the
detailed results displayed in Table 5. The results indicate that for our
experiments, the CO distance method with Resnet50 performed the
best when dealing with 3 classes. CO is a technique that gauges the
similarity between images by considering their angle similarities.



Distance Backbone 3-Class dataset 9-Class dataset
Recall Precision F1-Score Recall Precision F1-Score

EU
SqueezNet 95% 100% 98% 87% 91% 88%
ResNet18 94% 100% 97% 95% 96% 95%
ResNet50 97% 100% 98% 98% 100% 98%

KL
SqueezNet 94% 100% 97% 92% 96% 94%
ResNet18 95% 99% 97% 94% 97% 96%
ResNet50 89% 100% 94% 96% 97% 96%

IS
SqueezNet 94% 100% 97% 91% 98% 94%
ResNet18 88% 100% 93% 95% 98% 96%
ResNet50 97% 99% 98% 94% 100% 96%

MA
SqueezNet 94% 100% 97% 95% 98% 96%
ResNet18 94% 99% 96% 96% 98% 97%
ResNet50 96% 99% 97% 96% 98% 97%

WA
SqueezNet 94% 99% 97% 94% 98% 96%
ResNet18 91% 100% 95% 90% 94% 92%
ResNet50 95% 100% 98% 95% 96% 95%

CO
SqueezNet 79% 100% 88% 91% 93% 92%
ResNet18 92% 100% 96% 94% 98% 96%
ResNet50 98% 100% 99% 95% 100% 97%

Table 3. The table displays evaluation metrics for Aphid. On the left side, it highlights the 3-class dataset with 3 Ways, 5 Shots, and 9 Query
Samples. We employed ResNet18, SqueezeNet, and ResNet50 as the backbone of our prototypical networks, assessing various distance methods.
On the right side, the table showcases evaluation metrics for the 9-class dataset with 9 Ways, 5 Shots, and 9 Query Samples, also utilizing
ResNet18, SqueezNet, and ResNet50 as the backbone of our prototypical networks. For the 9-class dataset, ”Recall” represents the Weighted
Average Recall Value for Aphid Classes. The datasets used are detailed in Table 1 and Table 2.

Distance Backbone 3-Class dataset 9-Class dataset
Recall Precision F1-Score Recall Precision F1-Score

EU
SqueezNet 97% 98% 97% 91% 91% 91%
ResNet18 97% 98% 97% 95% 96% 95%
ResNet50 99% 99% 99% 97% 97% 97%

KL
SqueezNet 97% 97% 97% 93% 93% 93%
ResNet18 97% 97% 97% 96% 96% 96%
ResNet50 95% 96% 95% 96% 96% 96%

IS
SqueezNet 97% 97% 97% 95% 96% 95%
ResNet18 95% 95% 95% 95% 95% 95%
ResNet50 97% 97% 97% 97% 97% 97%

MA
SqueezNet 94% 94% 94% 94% 95% 95%
ResNet18 97% 97% 97% 97% 97% 97%
ResNet50 97% 97% 97% 98% 97% 97%

WA
SqueezNet 97% 97% 97% 95% 96% 95%
ResNet18 96% 96% 96% 93% 93% 93%
ResNet50 97% 97% 97% 96% 96% 96%

CO
SqueezNet 91% 93% 91% 92% 93% 92%
ResNet18 96% 96% 96% 96% 97% 96%
ResNet50 99% 99% 99% 98% 98% 98%

Table 4. The table displays evaluation metrics for all our insect classes. On the left side, it highlights the 3-class dataset with 3 Ways, 5 Shots,
and 9 Query Samples. We employed ResNet18, SqueezeNet, and ResNet50 as the backbone of our prototypical networks, assessing various
distance methods. On the right side, the table showcases evaluation metrics for the 9-class dataset with 9 Ways, 5 Shots, and 9 Query Samples,
also utilizing ResNet18, SqueezNet, and ResNet50 as the backbone of our prototypical networks. For the 9-class dataset, ”Recall” represents the
Weighted Average Recall Value for Aphid Classes. The datasets used are detailed in Table 1 and Table 2.
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Fig. 7. This bar chart shows how well each CNN performs in terms
of average overall recall across six different distance methods. The
analysis covers both the 3-class and 9-class datasets.

5.4 Best methods for each experiment

As our results exhibit minimal differences between the top two
performers in each experiment, we have chosen to present the two
best distance methods for each scenario in Table 5.

As demonstrated in the comparison, the EU method appears 5
times, while the MA method appears 3 times. This suggests that these
two methods consistently deliver reliable results across all our
experiments. Considering the additional computational resources
required by the MA method, it implies that, for aphid classification,
the EU method is likely more dependable compared to other methods.

5.5 Comparing models

In this section, we aim to compare the average recall values for the
”aphid” class in each experiment, as well as the overall average recall
for each experiment. This comparison allows us to assess the
performance of different CNNs and determine which experiments
yield superior results. Additionally, we can discern whether the
3-class or 9-class experiments demonstrate better outcomes through
this analysis.

We employ two charts to present and compare the data from
Table 3 more effectively. As depicted in Fig 7, we draw two key
conclusions regarding overall recall. Firstly, larger models exhibit
superior recall, benefiting from their ability to extract a greater
number of features. Secondly, experiments involving 3 classes
consistently outperform those using a 9-class dataset in terms of
overall performance. It shows that in our experiments, the dataset
with fewer classes can be classified better by few-shot learning.

In Fig 8, which is the second chart, we present the recall values for
aphids in each CNN individually, considering both the 3-class and
9-class datasets. In contrast to the earlier chart, we observe that the
recall values are higher for the 9-class dataset compared to the 3-class
dataset. Notably, in our experiments, the larger model demonstrates
superior results, which could be due to its capacity to extract more
features and contribute to improved performance.
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Fig. 8. This bar chart shows how well each CNN performs in terms of
average aphid recall across six different distance methods. The analysis
covers both the 3-class and 9-class datasets.

6 DISCUSSION

In our study, we tackled the significant challenge of recognizing
aphid images with limited samples, employing a learning approach
called prototypical networks. With a primary emphasis on achieving
a high rate of positive instances of aphid detection, our main goal was
to attain the highest recall values in our research. To assess
performance, we employed 6 distinct distance methods in
combination with 3 different CNN architectures. We achieved notable
success in our study, attaining recall values of 98% for aphid
classification and an impressive 99% for overall recall in insect
classification. This achievement is attributed to the incorporation of
Cosine similarity, which serves as our scientific contribution to the
3-class dataset. Our model, leveraging a modified ResNet50 as its
backbone, played a crucial role in obtaining these commendable
results.

In agriculture, identifying insect pests, particularly various types of
aphids, is a crucial challenge that significantly impacts the
economy[4]. Swift and precise visual recognition is essential for
practical applications to manage infestations in crops effectively.
Through various experiments in this research, while the best result is
related to Cosine similarity, we observed that both Euclidean distance
and Mahalanobis divergence prove to be reliable methods. However,
when considering computational resources, the Euclidean distance is
more efficient. When compared to one of our primary references
[10], where the KL method was identified as the optimal approach,
we observed contrasting results. This divergence could be attributed
to disparities in both the quality and quantity of input data. In the
insect dataset IP102 [10], images showcase backgrounds of leaves or
grass. It is worth noting that our dataset features a background of
sticky plates. Additionally, the IP102 dataset employs a larger
number of images compared to the datasets used in our experiments.

Additionally, larger CNNs extract more features, so they have the
potential to result in better outcomes. On the flip side, larger CNNs
demand more resources, especially in terms of GPU usage.

This research explored the impact of employing two different
datasets: a 9-class dataset (Table 1) that included two aphid classes, 6
different insect classes, and a background class. Additionally, we
utilized a 3-class dataset (Table 2) where aphids constituted one class,
other insects formed the second class, and the third class represented



Backbone 3-Class dataset 9-Class dataset
Distances Recall Precision F1-Score Distances Recall Precision F1-Score

SqueezNet EU 95% 100% 98% MA 95% 98% 96%
KL 94% 100% 97% WA 94% 98% 96%

ResNet18 KL 95% 99% 97% MA 96% 98% 97%
EU 94% 100% 97% EU 95% 96% 95%

ResNet50 CO 98% 100% 99% EU 98% 100% 98%
EU 97% 100% 98% MA 96% 98% 97%

Table 5. This table displays the two best distance methods for each experiment. Recall value for aphids is presented since it is our primary research
focus. For the 9-class scenario, we have included the weighted average of both aphid classes in this table. The datasets used are detailed in Table 1
and Table 2.

the background. The introduction of the background class was
necessary due to our outdoor camera setup, which could be triggered
by water drops.

In the course of our experiments, a noteworthy observation
emerged: the detection of aphids using the 9-class dataset yielded
superior results (Fig 8). This improvement could be attributed to the
utilization of 14 images for aphids in the 3-class dataset, aligning
with the central concept of few-shot learning that advocates using a
limited number of samples. In contrast, the 9-class dataset, featuring
two aphid classes, allowed us to employ 28 images. This increase in
the number of images provided a richer set of features for comparison
when utilizing our chosen CNN architectures.

7 CONCLUSIONS

In our study, we delved into the realm of insect pest image
recognition, grappling with limited samples. Our experiments
encompassed two distinct dataset compositions, revealing the
effectiveness of the cosine similarity distance method, as one of our
scientific contributions, boasting an impressive 98% recall for aphid
detection in the 3-class dataset paired with ResNet50. Across all 36
training iterations, we observed consistently reliable results, hovering
around the 95% recall mark.

Among the tested distance methods, while the best result is related
to Cosine similarity, Euclidean distance, and Mahalanobis divergence
emerged as trustworthy options. However, the former stood out as the
preferred choice due to its efficiency in computational resources. In
essence, we can rely on prototypical networks as a dependable
few-shot learning method. This method achieves 98% of recall in
aphid detection, requiring less data and fewer resources for training.

8 FUTURE WORKS

For future directions, we can delve into studies focusing on the
recognition of various types of aphids[4]. This exploration is crucial
due to the adverse impacts of different aphid species on agricultural
economies. Technically, using various mean functions instead of the
ordinal mean can impact and potentially change results. We used the
mean function to create prototypes, but exploring alternatives like
Weighted Mean or Geometric Mean could yield improved outcomes.
Testing different mean functions allows us to assess their impact and
enhance overall results. Furthermore, investigating the possibility of
altering the CNN architecture and optimizing it presents a promising
direction for future research. Specifically, exploring smaller
backbones is advantageous as it requires fewer computational
resources. Identifying a small yet effective CNN as the backbone for
prototypical networks could prove to be valuable.
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